Date	Spring 2018-2019	Credits	3 credits
Course Title	High Voltage Techniques	Course Number	EEE454
Pre-requisite (s)	None	Co-requisite (s)	None
Hours	45 hours	Out Of Class Work Hours	90 Hours

Place and Time of Class Meeting

Wednesday 09:00-11:50 @ C404

Name and Contact Information of Instructor

Asst. Prof. Omer Cihan Kivanc @ C215 e-mail: cihan.kivanc@okan.edu.tr

Book required

High Voltage Technique (in Turkish), Prof. Dr. İzzet GÖNENÇ, İ.T.Ü. Press, 1977.E. Kuffel, W. S. Zaengl, J. Kuffel, High Voltage Engineering Fundamentals, Newnes, 2000.

Classroom expectations for students

Attendance Policy

Students are liable to attend every course, practical and laboratory work of the program they are enrolled and to take the exams and participate in academic work required for achieving the course. Student attendance to all courses is compulsory. Students who do not attend a minimum 70% of the theoretical courses and 80% of the practical courses will be considered as absent for the related courses. Students who do not meet the mandatory minimum requirement of attendance will fail the course. Students who fail a course for not fulfilling minimum attendance requirement are obliged to meet the attendance requirement when they re-take the course.

Student Tardiness Policy

Students are permitted to arrive to the class in the first 15 minutes after the scheduled start of the course; extension of tardiness time is in instructor's discretion.

Course Description (must correspond exactly to Catalog description)

The purpose of this course is to introduce following topics: Current-voltage relationship in gases. Electron emission. Ionization and deionization. Townsend and Streamer breakdown mechanisms. Breakdown mechanisms in Electro negative gases. Lightning discharges. Corona discharges and corona loss. Breakdown mechanisms in Liquid and Solid dielectrics. Generation and measurement of A.C, D.C and Impulse voltages.

Learning Objectives

At the end of this course students will be able to:

- Describe Current-voltage relationship in gases.
- Understand the Electron emission, Ionization and deionization, Townsend and Streamer breakdown mechanisms.
- Understand the Breakdown mechanisms in Electro negative gases. Lightning discharges. Corona discharges and corona loss.
- Understand the Breakdown mechanisms in Liquid and Solid dielectrics.
- Understand the generation and measurement of A.C, D.C and Impulse voltages.

Topical Outline and Schedule

DATE	WEEK 1	
SPECIFIC	Introduction to high voltage concept	
OBJECTIVES		
TOPIC (S)	• Syllabus	
	Current-voltage relationship in gases	
LEARNING	Discussion of syllabus	
ACTIVITIES	Discussion of examples	
	Example problems	
OUT OF	Review the Class Notes	
CLASS		
WORK		
ASSIGMENT		

DATE	WEEK 2
SPECIFIC	Electron characteristics and acting
OBJECTIVES	
TOPIC (S)	Electron emission
LEARNING	Discussion of examples
ACTIVITIES	Example problems
OUT OF	Review the Class Notes
CLASS	
WORK	
ASSIGMENT	

DATE	WEEK 3
SPECIFIC	Ionization concept
OBJECTIVES	
TOPIC (S)	Ionization and deionization
LEARNING	Discussion of examples
ACTIVITIES	Example problems
OUT OF	Review the Class Notes
CLASS	
WORK	
ASSIGMENT	

DATE	WEEK 4
SPECIFIC	Fundamentals of breakdown mechanism
OBJECTIVES	
TOPIC (S)	Townsend and Streamer breakdown mechanisms
LEARNING	Discussion of examples
ACTIVITIES	Example problems
OUT OF	Review the Class Notes
CLASS	
WORK	
ASSIGMENT	

DATE	WEEK 5
SPECIFIC	Electronegative gases behavior
OBJECTIVES	
TOPIC (S)	Breakdown mechanisms in Electronegative gases
LEARNING	Discussion of examples
ACTIVITIES	Example problems
OUT OF	Review the Class Notes
CLASS	
WORK	
ASSIGMENT	

DATE	WEEK 6
SPECIFIC	Lighting effects
OBJECTIVES	
TOPIC (S)	Lightning discharges
LEARNING	Discussion of examples
ACTIVITIES	Example problems
OUT OF	Review the Class Notes
CLASS	
WORK	
ASSIGMENT	

DATE	WEEK 7
SPECIFIC	Coronas
OBJECTIVES	
TOPIC (S)	Corona discharges and corona loss
LEARNING	Discussion of examples
ACTIVITIES	Example problems
OUT OF	Review the Class Notes
CLASS	
WORK	
ASSIGMENT	

DATE	WEEK 8	
SPECIFIC	Liquid dielectrics behavior	
OBJECTIVES		
TOPIC (S)	Breakdown mechanisms in Liquid dielectrics	
LEARNING	Discussion of examples	
ACTIVITIES	Example problems	
OUT OF	Review the Class Notes	
CLASS		
WORK		
ASSIGMENT		

DATE		WEEK 9
SPECIFIC	•	Evaluate students via midterm exam
OBJECTIVES		
TOPIC (S)	•	Midterm Exam
LEARNING	None	
ACTIVITIES		
OUT OF	None	
CLASS		
WORK		
ASSIGNMENT		

DATE	WEEK 10	
SPECIFIC	Solid dielectric behavior	
OBJECTIVES		
TOPIC (S)	Breakdown mechanisms in Solid dielectrics	
LEARNING	Discussion of examples	
ACTIVITIES	Example problems	
OUT OF	Review the Class Notes	
CLASS		
WORK		
ASSIGMENT		

DATE	WEEK 11
SPECIFIC	A.C measurement techniques
OBJECTIVES	
TOPIC (S)	Generation and measurement of A.C voltages
LEARNING	Discussion of examples
ACTIVITIES	Example problems
OUT OF	Review the Class Notes
CLASS	
WORK	
ASSIGMENT	
DATE	WEEK 12
SPECIFIC	D.C measurement techniques
OBJECTIVES	
TOPIC (S)	Generation and measurement of D.C voltages
LEARNING	Discussion of examples
ACTIVITIES	Example problems
OUT OF	Review the Class Notes
CLASS	
WORK	
ASSIGMENT	

DATE	WEEK 13
SPECIFIC	Detail information on impulse voltages
OBJECTIVES	
TOPIC (S)	Generation and measurement of Impulse voltages
LEARNING	Discussion of examples
ACTIVITIES	Example problems
OUT OF	Review the Class Notes
CLASS	
WORK	
ASSIGMENT	

DATE	WEEK 14
SPECIFIC	• Analyze and design of example applications
OBJECTIVES	
TOPIC (S)	Example Circuits
LEARNING	Discussion of examples
ACTIVITIES	Example problems
OUT OF	Review the Class Notes
CLASS	
WORK	
ASSIGNMENT	

DATE	WEEK 15
SPECIFIC	• Evaluate students via final exam
OBJECTIVES	
TOPIC (S)	• Final Exam
LEARNING	None
ACTIVITIES	
OUT OF	None
CLASS	
WORK	
ASSIGNMENT	

Instructional Methods

In developing methodological strategies, it is best to discuss them between teachers and students in an environment of freedom and mutual agreement in order to ensure that the students make them their own and take responsibility for their execution and for attaining the goals of this course.

The following strategies may be used in this class:

- 1. A review of the literature.
- 2. Check of the reading.
- 3. Analysis of assigned readings.
- 4. Group discussions.
- 5. Individual and group discussions.
- 6. Preparation of reports.
- 7. Preparation of a didactic plan.
- 8. Carrying out a micro-class.

Instructional Materials and References

High Voltage Technique with Solved Problems (in Turkish), Volume 1, Assoc. Prof. Dr. Özcan KALENDERLİ, Prof. Dr. Celal KOCATEPE, Oktay ARIKAN, Birsen Press, 2005.

High Voltage Technique (in Turkish), Volume 2, Prof. Dr. Muzaffer ÖZKAYA, İ.T.Ü. Press, 1988 (or Birsen Press, 1996).

The Measurement in H.V. Technique (in Turkish), Prof. Dr. Muzaffer ÖZKAYA, İ.T.Ü. Press, 1984.

High Voltage Tests (in Turkish), Özcan KALENDERLİ, Aydoğan ÖZDEMİR, 1991.

M. S. Naidu and V. Kamaraju, High Voltage Engineering, Tata McGraw Hill Publication, 1990.

M. Khalifa, High Voltage Engineering, Theory and Practice, Marcel Dekker, 1990.

Assessment Criteria and Methods of Evaluating Students

Grade	Coefficient
AA	4.00
ВА	3.50
BB	3.00
СВ	2.50
СС	2.00
DC	1.50
DD	1.00
FF	0.00
VF	0.00

Distribution of Grade Elements				
In-Term Studies	Quantity	Percentage		
Project	1	30		
Midterm	1	30		
Total		60		
End-Term Studies	Quantity	Percentage		
Final	1	40		
Total		40		
Contribution Of In-Term Studies To Overall Grade	60			
End-Term Studies	40			
Total	100			